Adaptive estimation of mean and volatility functions in (auto-)regressive models
نویسندگان
چکیده
In this paper, we study the problem of non parametric estimation of the mean and variance functions b and σ2 in a model: Xi+1 = b(Xi) + σ(Xi)εi+1. For this purpose, we consider a collection of finite dimensional linear spaces . We estimate b using a mean squares estimator built on a data driven selected linear space among the collection. Then an analogous procedure estimates σ2, using a possibly different collection of models. Both data driven choices are performed via the minimization of penalized mean squares contrasts. The penalty functions are random in order not to depend on unknown variancetype quantities. In all cases, we state non asymptotic risk bounds in IL2 empirical norm for our estimators and we show that they are both adaptive in the minimax sense over a large class of Besov balls. Lastly, we give the results of intensive simulation experiments which show the good performances of our estimator.
منابع مشابه
Presenting a model for Multiple-step-ahead-Forecasting of volatility and Conditional Value at Risk in fossil energy markets
Fossil energy markets have always been known as strategic and important markets. They have a significant impact on the macro economy and financial markets of the world. The nature of these markets are accompanied by sudden shocks and volatility in the prices. Therefore, they must be controlled and forecasted by using appropriate tools. This paper adopts the Generalized Auto Regressive Condition...
متن کاملChange Point Estimation of the Stationary State in Auto Regressive Moving Average Models, Using Maximum Likelihood Estimation and Singular Value Decomposition-based Filtering
In this paper, for the first time, the subject of change point estimation has been utilized in the stationary state of auto regressive moving average (ARMA) (1, 1). In the monitoring phase, in case the features of the question pursue a time series, i.e., ARMA(1,1), on the basis of the maximum likelihood technique, an approach will be developed for the estimation of the stationary state’s change...
متن کاملComparison of autoregressive integrated moving average (ARIMA) model and adaptive neuro-fuzzy inference system (ANFIS) model
Proper models for prediction of time series data can be an advantage in making important decisions. In this study, we tried with the comparison between one of the most useful classic models of economic evaluation, auto-regressive integrated moving average model and one of the most useful artificial intelligence models, adaptive neuro-fuzzy inference system (ANFIS), investigate modeling procedur...
متن کاملAdaptive Signal Detection in Auto-Regressive Interference with Gaussian Spectrum
A detector for the case of a radar target with known Doppler and unknown complex amplitude in complex Gaussian noise with unknown parameters has been derived. The detector assumes that the noise is an Auto-Regressive (AR) process with Gaussian autocorrelation function which is a suitable model for ground clutter in most scenarios involving airborne radars. The detector estimates the unknown...
متن کاملConfidence Bands in Nonparametric Time Series Regression
We consider nonparametric estimation of mean regression and conditional variance (or volatility) functions in nonlinear stochastic regression models. Simultaneous confidence bands are constructed and the coverage probabilities are shown to be asymptotically correct. The imposed dependence structure allows applications in many linear and nonlinear auto-regressive processes. The results are appli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001